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Introduction and objective: We investigated the impact of 2D (2D_seg) and 3D (3D_seg) segmentation on the accuracy of 
prediction models in the radiomics analysis to determine the presence or absence of methylation in the O6-methylguanine DNA 
methyltransferase (MGMT) gene promoter region of gliomas. Materials and methods: Magnetic resonance imaging images of 
gliomas were obtained from the Cancer Imaging Archive for 50 methylated and 50 unmethylated cases respectively. For each 
case, 2D_seg and 3D_seg were performed, and 788 radiomics features, including wavelet transform, were obtained. Ten features 
were selected by LASSO regression. The coefficients of determination (R2) and root mean squared error (RMSE) were calculated 
by multiple regression analysis. Discriminant boundaries to discriminate methylation were created by linear discriminant 
analysis, and the sensitivity and specificity of each method were calculated. The discriminant accuracy of both methods was 
evaluated by receiver operating characteristics (ROC) analysis. Results: The R2 value and RMSE were 0.72/0.28 and 0.73/0.33 
for 2D_seg and 3D_seg, respectively. Similarly, sensitivity and specificity were 82.5/67.5% and 85/62.5%, respectively.  
The area under the curve determined by ROC analysis was 0.80 and 0.79, respectively, i.e. slightly larger for 2D_seg. The p-value 
by the DeLong method was 0.73. Conclusions: In the radiomics analysis using 2D_seg and 3D_seg, no difference in discriminant 
accuracy was observed between them. Therefore, 2D segmentation should be chosen because it is easier to segment.
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Wprowadzenie i cel: W pracy zbadano wpływ rodzaju segmentacji – 2D (2D_seg) i 3D (3D_seg) – na dokładność modeli 
predykcyjnych statusu mutacji promotora genu metylotransferazy O6-metyloguaniny (MGMT) w glejakach podczas analizy 
radiomicznej. Materiał i metody: Z zasobów zgromadzonych w Cancer Imaging Archive pobrano obrazy glejaków uzyskane 
metodą rezonansu magnetycznego: 50 przypadków z metylacją promotora MGMT i 50 przypadków bez metylacji.  
Dla każdego przypadku przeprowadzono segmentację 2D_seg i 3D_seg oraz wyodrębniono 788 cech radiomicznych, m.in. 
transformatę falkową. Przy zastosowaniu modelu regresji LASSO wybrano 10 cech. Wykorzystując analizę regresji 
wielokrotnej, obliczono współczynniki determinacji (R2) i średnią kwadratową błędu (root mean squared error, RMSE).  
Przy pomocy liniowej analizy dyskryminacyjnej określono graniczne wartości dyskryminujące umożliwiające różnicowanie 
statusu metylacji. Następnie obliczono czułość i swoistość każdej z metod. Dokładność dyskryminacyjną obu badanych 
metod oceniono przy wykorzystaniu analizy krzywych ROC. Wyniki: Wartości R2 i RMSE wyniosły 0,72/0,28 i 0,73/0,33 
odpowiednio dla metody 2D_seg i 3D_seg. Uzyskano czułość i swoistość odpowiednio 82,5/67,5% i 85/62,5%. Pole pod 
krzywą wyznaczone na podstawie analizy ROC wyniosło odpowiednio 0,80 i 0,79, a zatem było nieco większe dla metody 
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INTRODUCTION

Brain tumours are classified pathologically into a va-
riety of categories. In particular, twenty-two new 
classifications have been added to the World Health 

Organization (WHO) Classification of Tumours, 5th edition 
(WHO CNS5) (Louis et al., 2021). In addition to nerve cells 
and nerve fibres, the brain and spinal cord contain glial cells 
that support them; tumours arising from these cells are col-
lectively called gliomas. Gliomas constitute the most frequent 
primary intra-axial brain tumour in Japan, accounting for ap-
proximately 30% of all malignant tumours (The Committee 
of Brain Tumor Registry of Japan, 2017). As evident from the 
development of genetic diagnosis, specific genetic features 
impact treatment prognosis. For example, O6-methylguanine 
DNA methyltransferase (MGMT) is a DNA repair enzyme 
that removes alkyl groups from the O6 position of guanine 
in DNA and is considered to protect cells from alkylating 
agents. When the gene promoter region of MGMT expressed 
in glioma cells is methylated, the prognosis has been reported 
to be favourable for chemotherapy with the alkylating agent 
temozolomide (Hegi et al., 2005). However, such a genet-
ic diagnosis requires brain tumour cells, which necessitates  
a highly invasive tissue histopathological examination.
In contrast, a new field of study – radiomics – has been 
focused on the identification of lesion histology and gen-
otype by using the signal intensity of lesions depicted on 
computed tomography (CT) and magnetic resonance im-
aging (MRI) images. Various studies related to radiomics 
have been actively performed by using CT and MRI images  
(Feng et al., 2023; Sollini et al., 2021; Yang et al., 2019). 
Radiomics entails the measurement of relevant features 
based on the magnitude and distribution of the signal in-
tensity in the lesion; on this basis, the prediction model is 
constructed. The signal intensity of a lesion is obtained by 
extracting it from the image; therefore, a segmentation pro-
cess with regions of interest (ROIs) is necessary. Because CT 
and MRI images contain three-dimensional (3D) informa-
tion, segmentation can also be performed three-dimension-
ally (3D_seg); however, the larger the number of slices, the 
greater the effort required to set the ROIs. If only one slice 
with a lesion was selected and a two-dimensional (2D) ROI 
was set (2D_seg), and if there was no difference between 
the accuracy of the predicted model and that of 3D_seg, 
the segmentation process could be considerably simplified.  
In this study, we compared the accuracy of 2D_seg and  
3D_seg in predicting the methylation status of the MGMT 
gene promoter in gliomas.

MATERIALS AND METHODS

Creation of database

An outline of the radiomics analysis performed in this study 
is shown in Fig. 1. The samples used in this study were multi-
parametric MRI scans of de novo glioblastoma patients from 
the University of Pennsylvania Health System (UPENN-GBM)  
from the Cancer Imaging Archive (Frederick National 
Laboratory for Cancer Research, Frederick, MD, USA), a public-
ly available database. The database consists of 671 MRI-imaged  
glioma cases diagnosed according to the previous WHO crite-
ria (4th edition) (Louis et al., 2016), each comprising 192 slices. 
We selected cases that fulfilled the following conditions: meth-
ylation or no methylation as confirmed by genetic diagnosis, 
a single lesion, and 3D-T1WI imaging after contrast enhance-
ment. In addition, considering that the signal intensity of MRI 
images varies from case to case, we extracted cases that were 
imaged using equipment from the same manufacturer. We se-
lected 50 methylated and 50 unmethylated cases from a total 
of 100 cases (80 cases were used for training and 20 cases for 
test data). The breakdown of the cases is as follows; 28 males 
and 22 females (63.8 ± 7.2 years old) were methylated, and  
26 males and 24 females (61.2 ± 13.1 years old) were un-
methylated. The MRI systems used were TrioTim or Verio, 
both with a magnetic field strength of 3.0 T, manufactured  
by Siemens Healthcare (Erlangen, Germany).

Segmentation

ROIs for segmentation were set on the extracted MRI imag-
es of the 40 cases by using 3D Slicer (v5.2.1). Segmentation 
was performed manually by the author (a radiological tech-
nologist with 14 years of experience) and confirmed by the 
co-authors (one student at the department of radiological 
technology, and four radiological technologists with from  
1 to 25 years of experience). 3D_seg was used to segment all 
slices by setting the ROIs for every slices. 2D_seg was used 
to set the ROI in the slice with the largest tumour area in the 
transverse image. Although the images were obtained using 
equipment from the same manufacturer, the signal intensity 
differed across the cases because of the inherent character-
istics of MRI imaging. Therefore, the maximum signal in-
tensity in each case was normalised to 1.0 to minimise the 
influence of the differences in signal intensity. In addition, 
isotropic voxelisation was performed because the radiomics 
feature measurements were based on the assumption that 
the pixel size was the same in all directions.

2D_seg. Wartość p obliczona metodą DeLonga wyniosła 0,73. Wnioski: W analizie radiomicznej z wykorzystaniem 2D_seg 
i 3D_seg nie zaobserwowano istotnych różnic pomiędzy metodami pod względem uzyskanej dokładności dyskryminacyjnej. 
Należy zatem uznać, że metodą zalecaną jest segmentacja 2D z uwagi na jej prostszy przebieg.

Słowa kluczowe: segmentacja, glejak, MGMT, radiomika
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Radiomic feature measurement

The radiomic features of the segmented tumour regions 
were quantified using PyRadiomics, a Python package 
(van Griethuysen et al., 2017). We measured 14 shape,  
18 first-order, and 68 textural features. Additionally, a wave-
let transform was added as a preprocessing step before the 
measurement to increase the number of feature types. In to-
tal, 788 features were measured.

LASSO regression

Overlearning occurs when the explanatory variable (ra-
diomic feature) is excessively large compared to the objective 
variable (whether methylated or unmethylated). Therefore, 
the obtained features were reduced by means of least abso-
lute shrinkage and selection operator (LASSO) regression us-
ing RStudio (v2023.03.1+446) (Hastie et al., 2015). LASSO 
regression is a regularised linear regression method in which 
the sum of the weights (L1-norm term) is added to the least-
squares cost function, as shown in the following equation:
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 is 
the average of the correct values, and n is the number of  
radiomic features.
Fisher’s linear discriminant analysis (LDA) was also per-
formed using the two features that were most highly corre-
lated with the presence or absence of methylation (Fisher, 
1936). Sensitivity and specificity were determined by estab-
lishing an optimal linear decision boundary that effective-
ly separates the objective variables. In addition, a receiv-
er operating characteristic (ROC) analysis was performed. 
The area under the ROC curve (AUC) was analysed for sta-
tistical significance using the DeLong method (DeLong  
et al., 1988).

Fig. 1. Outline of the radiomics analysis



Effect of segmentation dimension on radiomics analysis for MGMT promoter methylation status in gliomas

11

AKTUALN NEUROL 2024, 24 (1), p. 8–14 DOI: 10.15557/AN.2024.0002

RESULTS

Fig. 2 shows six cases for each sample. It is reported that 
it is possible to distinguish MGMT methylation from MRI 
imaging findings, however it was difficult task (see Fig. 2) 
(Drabycz et al., 2010). The radiomics features selected by 
LASSO regression are shown in Tabs. 1 and 2. The cate-
gories in the table indicate the types of features. Overall, 
many texture-related features were selected. The features 
with “wavelet” in the feature names are those that were 
measured after the wavelet transform was applied as a pre-
processing step. Conversely, “original” is a feature without 
wavelet transform. Moreover, as regards the designations 
“HLH” and “LHH”, “H” denotes a high-pass filter and “L” 
indicates a low-pass filter. Furthermore, “gldm” and “glrlm” 

are texture features, which are calculated by transforming 
the signal intensity into a matrix and then calculating vari-
ance and similarity.
Tab. 3 shows the R2 value and RMSE obtained by the multi-
ple regression analysis. Neither the R2 value nor RMSE dif-
fered significantly among the segmentation dimensions in 
the train and test data.
The LDA results used for the train and test data are shown 
in Fig. 3. 2D_seg had sensitivities of 82.5% (train) and 80% 
(test), and specificities of 67.5% (train) and 70% (test) for 
discriminating unmethylated cases. Similarly, the sensi-
tivity and specificity of 3D_seg were 85% (train) and 80% 
(test), and 62.5% (train) and 60% (test), respectively. The re-
sults of the ROC analysis are shown in Fig. 4. The AUC val-
ues of 2D_seg and 3D_seg were 0.80 and 0.79, respectively, 

Fig. 2. �Glioma cases with or without methylation used for this study
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with 2D_seg being slightly larger than 3D_seg. There were 
no differences between these models (DeLong method, 
p = 0.73, 95% confidence interval −0.095 to 0.14).

DISCUSSION

The features selected by LASSO regression differed between 
2D_seg and 3D_seg; however, they all had the same number 
of texture features. As the images used were MRI images, 

the signal intensities were not absolute values. Certain im-
age properties, such as signal intensity, affect radiomic fea-
ture measurements (Scalco et al., 2020). Therefore, the sig-
nal intensity was normalised before feature measurement; 

Fig. 4. �ROC curve of the two types of segmentation dimension 
discriminated the methylation. AUCs of 2D_seg and  
3D_seg are 0.80 and 0.79 (p = 0.73, 95% confidence in-
terval −0.095 to 0.14)

Tab. 1. Selected radiomic features with use of 2D_seg

Tab. 2. Selected radiomic features with the use of 3D_seg

Tab. 3. Results of multi regression analysis
R2 – coefficients of determination value; RMSE – root mean squared error.

Fig. 3. Results of LDA and decision boundary for (a) 2D_seg and (b) 3D_seg
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however, the effects of frequency characteristics and  
other image corrections could not be removed. Therefore, 
if statistical features such as first-order features are calculat-
ed using signal intensity, the discrimination accuracy may 
be reduced. However, the texture feature, which converts 
the signal intensity into a matrix and measures dispersion 
as a scalar quantity, is largely unaffected by the differences  
in signal intensity among samples. This is likely because 
the features selected in LASSO regression contained more 
texture features. There was also a difference in the num-
ber of features to which the wavelet transform was applied 
between 2D_seg and 3D_seg. In 2D_seg, there was only 
one “original” feature for which the wavelet transform was 
not applied. In contrast, 3D_seg had four features. The ad-
vantage of using wavelet transforms for preprocessing is 
that they broaden the range of radiomic features and en-
able more features to be acquired. However, the amount of 
information in 3D_seg is significantly different from that 
in 2D_seg because it contains 3D information. Therefore, 
the original image without wavelet transform was correlat-
ed with the objective variable. However, the application of 
wavelet transforms for preprocessing is performed automat-
ically before measurement in the PyRadiomics procedure. 
Therefore, the measurement time is not extended, and this 
is not a reason to actively adopt 3D_seg.
There was no significant difference in the discrimination ac-
curacy between 2D_seg and 3D_seg for any of the indices.  
Therefore, the segmentation dimensions do not affect the 
discrimination accuracy. One of the reasons 2D_seg did 
not degrade in accuracy is that, as mentioned above, it uti-
lises texture information and wavelet transforms to gener-
ate a variety of information from a small amount of sig-
nal intensity information. We also considered the effect of 
errors on segmentation performance. The setting of ROIs 
during segmentation affects the measurement of radiomics 
features (Eertink et al., 2022). This is because areas other 
than the lesion of interest or signals that are extremely high 
(low) in intensity compared to the signal intensity of the le-
sion are included. In this study, the ROI setting was com-
pleted manually, and 3D_seg set the ROIs for each slice, 
which may have accumulated segmentation errors. These 
factors may also explain the lack of differences between 
2D_seg and 3D_seg. Furthermore, the AUC in the ROC 
analysis and statistical analysis showed no significant dif-
ferences. However, there was a difference in the shapes of 
the ROC curves. 2D_seg is the ROC curve with the TPF 
rising first. This indicates that the number of false positives 
was small. 3D_seg is the curve where the FPF first increas-
es, which indicates a high false-positive rate. This finding is 
consistent with the LDA results. However, when consider-
ing the AUC, there was no difference between the segmen-
tation dimensions.
Finally, the limitation of this study is described. Gliomas 
are classified into subtypes, such as astrocytoma, oligoden-
droglioma, and paediatric-type diffuse glioma. However, in 
this study, we did not classify these subtypes, but only by 

the presence or absence of MGMT methylation. The classi-
fication should be validated using only one category in the 
WHO CNS5 classification.

CONCLUSION

In this study, we investigated whether there was a difference 
in discrimination accuracy between 2D and 3D segmenta-
tion (2D_seg and 3D_seg) in radiomics analysis of the pres-
ence or absence of methylation in the promoter region of 
the MGMT gene in gliomas. Various evaluations demon-
strated no difference in discrimination accuracy between 
2D_seg and 3D_seg. Therefore, radiomics analysis to dis-
criminate the presence or absence of methylation in MGMT 
may be reliably performed using 2D_seg.
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